miércoles, 16 de mayo de 2012



TIPOS DE MICRÓFONOS
INTRODUCCIÓN
 
Los micrófonos son transductores electroacústicos que se ocupan de transformar la presión sonora ejercida sobre su cápsula en energía eléctrica. La membrana o diafragma es un elemento fundamental que está presente en cada uno de ellos. Las diferencias que estriban entre los diferentes tipos de micrófonos se basan principalmente en la sensibilidad que son capaces de proporcionar, que están directamente ligadas a la capacidad del micrófono de capturar las oscilaciones mecánicas que provienen de la membrana, y transformar proporcionalmente con éxito dichas oscilaciones en energía eléctrica... intentando conservar la dinámica original de la fuente que deseamos capturar. Como bien parece, no es nada sencillo de conseguir, y desde su nacimiento, el micrófono ha experimentado una larga carrera en busca de la perfección sonora. Este hecho ha desencadenado, por un lado, que los micrófonos hayan llegado a una calidad ya bastante considerable a día de hoy, y por otro, que su tipología se haya fragmentado buscando el mayor rendimiento para cada aplicación en concreto.

En este texto intentaremos desglosar los diferentes tipos de micrófonos, las características que los diferencian, y el tipo de aplicaciones que se ven favorecidas por el uso de uno u otro tipo, aunque abordando el tema de una modo más técnico que práctico, con el fin de conocer los pilares fundamentales de la microfonía antes de ponernos manos a la labor.

EL MICRÓFONO DINÁMICO

En el magneto-dinámico, comúnmente llamado dinámico, la ondas sonoras generan el movimiento de un delgado diafragma metálico y una bobina de hilo conductor. Un imán produce un campo magnético que rodea la bobina, y el movimiento de ella dentro de ese campo induce un flujo de corriente. El principio es el mismo que la producción de electricidad por las compañías de distribución, pero en una escala miniaturizada. Es importante recordar que la corriente se produce por el movimiento del diafragma, y la cantidad de corriente está determinada por la velocidad de este movimiento. Este tipo de micrófonos es conocido como sensitivos a la velocidad.

En función de la eficacia del micro en su conversión de la onda acústica a eléctrica, podemos distinguir dos grupos:

Micrófonos dinámicos de bobina:  En ellos, una pequeña bobina recoge el movimiento de la membrana o diafragma y, al moverse ésta, se genera una corriente. Las ventajas son un coste razonable, robustez, uso sencillo, duro (admiten niveles alto de presión sin saturar) y resistencia de salida baja. Los inconvenientes son una frecuencia algo irregular (con picos) y una sensibilidad alta a golpes y vibraciones. Suelen usarse para instrumentos muy sonoros, así como captaciones en exteriores (por su arquitectura robusta); pueden ser conectados mediante largos cables.
 
Micrófonos dinámicos de cinta: La diferencia con los de bobina es que el conductor es una cinta metálica en lugar de la bobina. Las ventajas son su robustez también y un refuerzo notable de frecuencias medias y bajas. Los inconvenientes radican en su peso, irregularidad y pobreza en agudos. No se recomiendan para instrumentos muy sonoros.

  

EL MICRÓFONO DE CONDENSADOR

En un micrófono de condensador, el diafragma está montado junto a una placa (que puede estar agujereada o no), pero sin llegar a tocarla. Una pila está conectada a ambas piezas de metal, la cual produce una diferencia de potencial eléctrico, o carga, entre ellas. La cantidad de esta carga está determinada por el voltaje de la pila, el área del diafragma y la placa y la distancia entre ambos. Esta distancia cambia si el diafragma se mueve como respuesta al impacto de las ondas sonoras. Cuando la distancia cambia, la corriente fluye por el hilo conductor (mientras la pila continúe administrando la misma diferencia de potencial). La cantidad de corriente es básicamente proporcional al desplazamiento del diafragma, y tan diminuta, que debe ser amplificada antes de abandonar el micrófono.


Suelen tener pérdidas de señal si usamos cables de longitud superior a un metro; por este motivo llevan a menudo incorporado un preamplificador inmediatamente detrás del condensador.

Las ventajas son una respuesta plana, gran fidelidad, buen comportamiento en agudos y ataques, buenas relaciones señal/ruido, poco sensibles a las vibraciones y reducido tamaño. Los inconvenientes se centran en su sensibilidad a la humedad, necesidad de alimentación, frágiles y elevado precio. Se aplican en prácticamente todas las captaciones profesionales.

Micrófonos Electret

Es una variante común de los micrófonos de condensador, que emplea un material que confiere carga permanentemente al diafragma. Este material suele ser algún tipo de plástico, y se le denomina Electrito. A menudo manipulamos plásticos cargados permanentemente cuando desenvolvemos un paquete retractilado. Muchos plásticos son conductores cuando están calientes y aislantes cuando está fríos. El plástico es un buen material para fabricar diafragmas por su fiabilidad reproduciendo especificaciones bastante precisas (algunos de los micrófonos más populares llevan incorporados diafragmas de plástico). Por esto no necesitan alimentación aunque sigue siendo preciso el uso de un preamplificador que sigue solicitando corriente, pero en este caso es suficiente con una pila encerrada en la carcasa del propio micrófono. Las ventajas son un precio más asequible y menor sensibilidad a la humedad. El mayor inconveniente de los electritos es que pierden la carga después de algunos años y dejan de ser operativos, además de tener peores respuestas de agudos y menor sensibilidad en general.

ESPECIFICACIONES DE LOS MICRÓFONOS

No existe ninguna ventaja inherente al uso de un tipo de micrófono sobre otro en cuanto a la fidelidad de captación. Los de condensador requieren el uso de baterías desde la mesa (alimentación fantasma) para funcionar, lo que, en ocasiones, supone una traba en el trabajo; los dinámicos necesitan protección por la dispersión de los campos magnéticos, que los hace un poco duros a veces. Sin embargo, se pueden encontrar micrófonos muy buenos en ambos estilos. El factor más importante en la elección de un micrófono es cómo suena en la aplicación para la que se va a utilizar. Deben considerarse los siguientes apartados:


Sensibilidad

Esta es la medida de la cantidad de salida eléctrica que se produce por la toma de un sonido. Esta es una especificación vital si estamos intentando captar sonidos muy tenues, como por ejemplo, una tortuga haciendo burbujas con la boca en su jaula, pero es un asunto que debe tenerse en cuenta siempre. Si colocamos un micro poco sensible frente a un instrumento que produzca un sonido tenue, como podría ser una guitarra acústica, tendremos que incrementar la ganancia en la mesa, añadiendo ruido a la mezcla. Por otro lado, un micrófono muy sensible para las voces podría saturar las entradas electrónicas de la mesa o el multipistas, produciendo distorsión.


Características de la saturación

Cualquier micrófono distorsionará si se sobrepasa su umbral de captación con sonidos muy fuertes. Esto sucede por varios factores. Con un dinámico, la bobina puede salirse del campo magnético; en uno de condensador, el amplificador interno puede recortar la señal. Una saturación mantenida o sonidos extremadamente intensos pueden distorsionar permanentemente el diafragma, degradando la respuesta a niveles ordinarios. Los sonidos fuertes se encuentran más a menudo de lo que pensamos, especialmente si colocamos el micrófono cerca de los instrumentos (¿quién se atreve a poner el oído en la campana de una trompeta?) Normalmente debemos elegir entre alta sensibilidad y altos puntos de saturación, aunque, en ocasiones existen interruptores en los micrófonos para afrontar estas situaciones diferentes.


Linealidad o distorsión

Esta es la característica que aumenta el precio de los micrófonos. Las características de la distorsión de un micrófono están determinadas, sobre todo, por el cuidado con que se ha construido y montado el diafragma. Los altos volúmenes pueden arruinar un micrófono perfectamente válido, pero la distorsión de funcionamiento es un asunto de suerte. Muchos fabricantes tienen numerosos modelos para lo que es el mismo componente. Ellos fabrican una partida y luego realizan los controles de calidad para poner un precio "premium" a los que pasan dicho control. Las firmas grandes desechan cápsulas que no cumplen con sus normas internas (si compramos un Neumann, realmente estamos pagando por cinco).

Ningún micrófono es perfectamente lineal; lo mejor que podemos hacer es conseguir uno cuya distorsión complemente el sonido que estamos intentando grabar. Este es un de los factores que convierten una grabación doméstica en una profesional.


Respuesta en frecuencia

Una respuesta de frecuencia plana ha sido el principal acierto de los fabricantes de micrófonos en las últimas cuatro décadas. En los años cincuenta, los micrófonos eran tan malos, que los fabricantes de mesas de mezclas comenzaron a añadir ecualizadores a cada entrada para compensar las desviaciones. Este esfuerzo ha sido recompensado ahora hasta el punto que los micrófonos más profesionales  son respetablemente planos, incluso con sonidos captados frontalmente. La mayor excepción son los micrófonos que enfatizan deliberadamente ciertas frecuencias que son usuales en ciertas aplicaciones.

 
Ruido

Los micrófonos producen una muy pequeña cantidad de corriente, que toma sentido cuando consideramos como electricidad las partes móviles que deben preceder con exactitud a las ondas sonoras. Para ser operativa tanto en el sentido de la grabación como en otros procesos electrónicos, la señal debe ser amplificada por un factor que oscila alrededor del millar. Cualquier ruido eléctrico producido por el micrófono será también amplificado, por eso, pequeñas cantidades de ruido son intolerables. Los dinámicos están libres de ruido, pero el circuito electrónico integrado en los de condensador es una potencial fuente de problemas, y debe ser cuidadosamente diseñado y construido con piezas de calidad excelente.

El ruido además incluye captaciones indeseadas de vibración mecánica a través del cuerpo del micrófono. Diseños muy sensibles requieren monturas elásticas para las sacudidas, y los micrófonos concebidos para ser llevados en la mano necesitan poseer este tipo de monturas encajadas en su interior.

La más común fuente de ruido asociada a los micrófonos es el cable que los conecta a la mesa de mezclas o al multipistas. Un micrófono preamplificado es muy similar a un receptor de radio, por eso, debe prevenirse que el cable se convierta en una antena. La técnica básica es rodear el cable que lleva la corriente desde el micro hasta la mesa con una malla metálica que desvía una gran cantidad de energía de radio (la conocida jaula de Faraday).

Una segunda técnica, que es más efectiva para los zumbidos en bajas frecuencias inducidos por las compañías de distribución eléctrica en el equipo, es balancear la línea. La corriente producida por el micrófono fluirá por uno de los cables del par entrelazado, y regresará por el otro. Cualquier corriente inducida en el cable desde una fuente externa tenderá a fluir de la misma manera por ambos cables, y las corrientes se cancelarán unas a otras en los transformadores. Este método es caro.


Niveles

La salida de los micrófonos tiene, por necesidad, una señal muy débil, del orden de -60 dB (la potencia producida por una presión de 9,87 µatm ejercida por un sonido). La impedancia de salida dependerá de la existencia de un transformador balanceado a la salida. Si no es así, el micrófono se llamará de "alta impedancia" o "alta Z" y tendrá que ser conectado a una entrada apropiada. El cable empleado debe ser corto, menor a tres metros, para evitar problemas de ruido.

Si el micrófono tiene transformador, se etiquetará como de "baja impedancia", y trabajará mucho mejor con una entrada balanceada de micro preamplificada. El cable puede tener decenas de metros sin ningún tipo de problemas (salvo que los propios cables estén en mal estado). Los micrófonos de baja impedancia y salida balanceada son caros, y generalmente se utilizan para aplicaciones profesionales.

Las salidas balanceadas deben tener tres conectores (enchufes tipo "canon") pero no todos los micrófonos con estos conectores están balanceados.

Los que tiene clavijas normales tipo jack o miniaturizadas, son de alta impedancia. Un micrófono balanceado puede ser usado en una entrada de alta impedancia mediante un adaptador apropiado.

La diferencia fundamental entre un equipo doméstico y otro profesional es la inclusión de un transformador en la mesa de mezclas. Los transformadores no son caros, por lo que se pueden comprar para añadirlos al equipo, siempre que sepamos lo que estamos adquiriendo y no nos confundamos con un adaptador para para los conectores. Con esta configuración, se puede trabajar con micrófonos de calidad profesional, tirar cables de hasta 30 metros sin zumbidos y, si los transformadores elevan la señal un poco, realizar grabaciones con mucho menos ruido. Este sistema no funcionará con la mayoría de multipistas, porque la señal fuerte produce distorsión. Aunque la mesa tendrá otros problemas, es un buen punto de partida para afrontar grabaciones de alta fidelidad.
  


MODELOS DE CAPTACIÓN

Mucha gente tiene la concepción errónea que los micrófonos sólo captan el sonido de fuentes colocadas frente a ellos, como sucede con las cámaras fotográficas y sus lentes. Esta sería una maravillosa característica si fuese cierta, pero la verdad es que lo único que podemos hacer es aproximarnos a este ideal en detrimento de otros matices igualmente deseables.

Los tipos de micrófonos responden a gráficas polares de la salida producidas contra el ángulo de la fuente sonora. La salida se representa por el radio de curvatura en el ángulo de incidencia.


Omnidireccional (de presión)

El diseño más simple de micrófono captará todos los sonidos, sin tener en cuenta el punto de origen. Este es el conocido micrófono omnidireccional. Son fáciles de usar y tienen excepcionales respuestas de frecuencia.


Bidireccional (de gradiente)

No es difícil producir un tipo de captación que acepte sonidos provenientes frontalmente o desde la parte de atrás del diafragma, pero que no recoja nada proveniente de los laterales. Esta es la manera en que cualquier diafragma se comportará si el sonido lo golpea anterior y posteriormente de igual modo. El rechazo de sonido indeseado es la característica más factible de cualquier diseño, pero el hecho que el micrófono capte sonido desde ambos extremos complica su uso en algunas situaciones.  A menudo se coloca por encima del instrumento. La frecuencia de respuesta es tan buena como en un omnidireccional, incluso para sonidos que no están demasiado cerca del micrófono, aunque presentan efecto proximidad, que dificulta su uso en tomas de poca distancia. Potencian los graves (suelen ir provistos de un selector de filtro de graves).
  

Cardioide (concentrador de haz)

Este tipo es popular para reforzar el sonido de conciertos donde el ruido de la audiencia es un problema presente. El concepto es muy bueno, un micrófono que capta los sonidos hacia los que está enfocado. La realidad, lamentablemente es distinta, el primer problema es que esos sonidos que llegan desde detrás no están completamente anulados, sino simplemente atenuados entre 10 y 30 dBs; y esto puede sorprender a usuarios descuidados. El segundo problema (muy importante) es que este tipo de captación varía con la frecuencia. Para bajas frecuencias, se comporta como un omnidireccional. Un micrófono direccional en el rango de las bajas frecuencias será equitativamente grande y caro. Además, la respuesta de frecuencia para señales que lleguen desde la parte anterior y laterales, será distinta; añade una coloración indeseada a los instrumentos ubicados en los extremos de la orquesta, o a la reverberación de la sala.

Una tercera circunstancia, que puede ser un problema o un efecto deseado, es que el micrófono enfatizará las los componentes de bajas frecuencias provenientes de cualquier fuente situada cerca del diafragma (efecto proximidad). Muchos cantantes y locutores se aprovechan de este efecto para añadir algo más de cuerpo a una voz poco potente.

También hay que destacar el tamaño del micrófono, de manera que los diseños largos son más precisos en el equilibrio de la respuesta de frecuencia anterior y lateral pero también son los más enfatizadores del efecto proximidad. Muchos micrófonos cardioides llevan incorporado un interruptor que activa un filtro pasa bajos muy abierto, para compensar el efecto proximidad. Olvidar esto puede causar efectos angustiosos. Los micrófonos bidireccionales también presentan este fenómeno.

A mayor radio del diafragma, menor es el efecto amplificador de las bajas frecuencias debido al efecto proximidad.


Hipercardioide

Es posible exagerar la orientación de la captación en los micrófonos cardioides, si no nos importa exagerar también algunos problemas. El tipo hipercardioide es muy popular porque ofrece una respuesta de frecuencia más plana y mejor rechazo global a costa de un pequeño lóbulo trasero de captación. Este es, a menudo, un buen compromiso entre el cardioide y los micrófonos bidireccionales. Un micrófono del tipo "escopeta" lleva esas técnicas a extremos montando un diafragma en mitad del tubo (bastidor). Es extremadamente sensible a lo largo del eje principal, pero posee lóbulos extras que varían drásticamente con la frecuencia. De hecho, la respuesta de frecuencia de este tipo es tan mala que, normalmente, está electrónicamente restringido al rango de la voz humana, donde se usa para grabar diálogos y narraciones en cine y video.


Escopeta (o cañón)

Caracterizados por una alta directividad. La diferencia de caminos de la onda que provoca el desfase se produce en un largo tubo situado frente al diafragma. Este tubo dispone de unas ranuras por las que recibirá la señal, de modo que finalmente el diafragma recibirá señales cortas por el frente, señales medias laterales a medio tubo y señales laterales largas al final del mismo. Son especialmente útiles para exteriores o lugares de escasa reverberación.


Estéreo

No se necesita un micrófono especial para grabar en estéreo; con un par de micrófonos normales basta. En realidad, los denominados micrófonos estéreo, son dos cápsulas montadas en el mismo bastidor. Existen dos tipos: los profesionales y carísimos montados en una misma caja, con ángulos de cápsula ajustables e interruptores de control remoto sobre los tipos de captación, y las unidades más económicas (a menudo con las cápsulas orientadas 180 grados) que pueden venderse a altos precios porque llevan impresa la palabra estéreo sobre la montura. [Hay un artículo en este sitio que se ocupa de las técnicas de grabación estéreo].


EN RESUMEN

Con esta guía se pretende orientar al lector en el uso de los diferentes tipos de micrófono que existen en base a su construcción y su direccionalidad. Hay una serie de recomendaciones acerca de qué tipo de micro usar dependiendo del instrumento que pretendamos capturar, aunque de nuevo la experimentación se convierte en la mejor manera de decidir por uno mismo qué micro es apropiado para cada ocasión, o qué conjunto de micrófonos usaremos dependiendo de factores como la colocación, el nivel spl que el instrumento arroja, el tipo de sala, etc.

Es recomendable disponer al menos de micros dinámicos y de condensador para las aplicaciones más comunes que podemos encontrarnos en la etapa de grabación. No hace falta que éstos sean un estándar en el mercado, ya que gracias a la incesante avalancha de micrófonos que provienen de los mercados orientales, que gozan de una calidad/precio difícil de igualar, podemos disponer de un equipo de microfonía completo sin falta de grandes desembolsos por nuestra parte.

Si nos fijamos, veremos que en el mercado existen micrófonos de condensador que ofrecen varios patrones polares en una misma unidad, o varias cápsulas intercambiables, como es el caso de los micrófonos de "lápiz". De este modo, se puede adecuar la respuesta del micrófono a la señal que pretendamos capturar, en base a la direccionalidad.

De todos modos, es importante recordar recordar que un buen micrófono está "cojo" si no va acompañado de un previo acorde a su calidad. Intentemos caer en la tentación de invertir en buenos micrófonos, si vamos a dejar un pequeño porcentaje del presupuesto para los previos. Mejor opción es adquirir micros y previos de calidad semejante, si la inversión es a medio/largo plazo. Si se trata de adquisiciones a corto plazo, quizá sea mejor invertir en bueno micrófonos, ya que estos nos acompañarán a lo largo de muchos años, y cuanto antes empecemos a conocer su funcionamiento y sonido, mejor que mejor.

Corriente alterna  

Saltar a: navegación, búsqueda
Figura 1: Forma sinusoidal.
Se denomina corriente alterna (abreviada CA en español y AC en inglés, de alternating current) a la corriente eléctrica en la que la magnitud y el sentido varían cíclicamente. La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal (figura 1), puesto que se consigue una transmisión más eficiente de la energía. Sin embargo, en ciertas aplicaciones se utilizan otras formas de oscilación periódicas, tales como la triangular o la cuadrada.
Utilizada genéricamente, la CA se refiere a la forma en la cual la electricidad llega a los hogares y a las empresas. Sin embargo, las señales de audio y de radio transmitidas por los cables eléctricos, son también ejemplos de corriente alterna. En estos usos, el fin más importante suele ser la transmisión y recuperación de la información codificada (o modulada) sobre la señal de la CA.

Historia

En el año 1882 el físico, matemático, inventor e ingeniero Nikola Tesla, diseñó y construyó el primer motor de inducción de CA. Posteriormente el físico William Stanley, reutilizó, en 1885, el principio de inducción para transferir la CA entre dos circuitos eléctricamente aislados. La idea central fue la de enrollar un par de bobinas en una base de hierro común, denominada bobina de inducción. De este modo se obtuvo lo que sería el precursor del actual transformador. El sistema usado hoy en día fue ideado fundamentalmente por Nikola Tesla; la distribución de la corriente alterna fue comercializada por George Westinghouse. Otros que contribuyeron en el desarrollo y mejora de este sistema fueron Lucien Gaulard, John Gibbs y Oliver Shallenger entre los años 1881 y 1889. La corriente alterna superó las limitaciones que aparecían al emplear la corriente continua (CC), el cual es un sistema ineficiente para la distribución de energía a gran escala debido a problemas en la transmisión de potencia, comercializado en su día con gran agresividad por Thomas Edison.
La primera transmisión interurbana de la corriente alterna ocurrió en 1891, cerca de Telluride, Colorado, a la que siguió algunos meses más tarde otra en Alemania. A pesar de las notorias ventajas de la CA frente a la CC, Thomas Edison siguió abogando fuertemente por el uso de la corriente continua, de la que poseía numerosas patentes (véase la guerra de las corrientes). De hecho, atacó duramente a Nikola Tesla y a George Westinghouse, promotores de la corriente alterna, a pesar de lo cual ésta se acabó por imponer. Así, utilizando corriente alterna, Charles Proteus Steinmetz, de General Electric, pudo solucionar muchos de los problemas asociados a la producción y transmisión eléctrica, lo cual provocó al fin la derrota de Edison en la batalla de las corrientes, siendo su vencedor Nikola Tesla y su financiador George Westinghouse.

Corriente alterna frente a corriente continua

La razón del amplio uso de la corriente alterna viene determinada por su facilidad de transformación, cualidad de la que carece la corriente continua. En el caso de la corriente continua la elevación de la tensión se logra conectando dínamos en serie, lo cual no es muy práctico, al contrario en corriente alterna se cuenta con un dispositivo: el transformador, que permite elevar la tensión de una forma eficiente.
La energía eléctrica viene dada por el producto de la tensión, la intensidad y el tiempo. Dado que la sección de los conductores de las líneas de transporte de energía eléctrica depende de la intensidad, podemos, mediante un transformador, elevar el voltaje hasta altos valores (alta tensión), disminuyendo en igual proporción la intensidad de corriente. Con esto la misma energía puede ser distribuida a largas distancias con bajas intensidades de corriente y, por tanto, con bajas pérdidas por causa del efecto Joule y otros efectos asociados al paso de corriente tales como la histéresis o las corrientes de Foucault. Una vez en el punto de consumo o en sus cercanías, el voltaje puede ser de nuevo reducido para su uso industrial o doméstico y comercial de forma cómoda y segura.

Las matemáticas y la CA sinusoidal

Algunos tipos de oscilaciones periódicas tienen el inconveniente de no tener definida su expresión matemática, por lo que no se puede operar analíticamente con ellas. Por el contrario, la oscilación sinusoidal no tiene esta indeterminación matemática y presenta las siguientes ventajas:
  • La función seno está perfectamente definida mediante su expresión analítica y gráfica. Mediante la teoría de los números complejos se analizan con suma facilidad los circuitos de alterna.
  • Las oscilaciones periódicas no sinusoidales se pueden descomponer en suma de una serie de oscilaciones sinusoidales de diferentes frecuencias que reciben el nombre de armónicos. Esto es una aplicación directa de las series de Fourier.
  • Se pueden generar con facilidad y en magnitudes de valores elevados para facilitar el transporte de la energía eléctrica.
  • Su transformación en otras oscilaciones de distinta magnitud se consigue con facilidad mediante la utilización de transformadores.

Oscilación sinusoidal

Figura 2: Parámetros característicos de una oscilación sinusoidal.
Una señal sinusoidal, a(t), tensión, v(t), o corriente, i(t), se puede expresar matemáticamente según sus parámetros característicos (figura 2), como una función del tiempo por medio de la siguiente ecuación:

a(t)=A_0 \cdot \sin(\omega t + \beta)
donde
A_0 es la amplitud en voltios o amperios (también llamado valor máximo o de pico),
\omega la pulsación en radianes/segundo,
t el tiempo en segundos, y
\beta el ángulo de fase inicial en radianes.
Dado que la velocidad angular es más interesante para matemáticos que para ingenieros, la fórmula anterior se suele expresar como:

a(t)=A_0 \cdot \sin(2 \pi f t + \beta)
donde f es la frecuencia en hercios (Hz) y equivale a la inversa del período f=\frac{1}{T}. Los valores más empleados en la distribución son 50 Hz y 60 Hz.

Valores significativos

A continuación se indican otros valores significativos de una señal sinusoidal:
  • Valor instantáneo (a(t)): Es el que toma la ordenada en un instante, t, determinado.
  • Valor pico a pico (App): Diferencia entre su pico o máximo positivo y su pico negativo. Dado que el valor máximo de sen(x) es +1 y el valor mínimo es -1, una señal sinusoidal que oscila entre +A0 y -A0. El valor de pico a pico, escrito como AP-P, es por lo tanto (+A0)-(-A0) = 2×A0.
  • Valor medio (Amed): Valor del área que forma con el eje de abcisas partido por su período. El valor medio se puede interpretar como el componente de continua de la oscilación sinusoidal. El área se considera positiva si está por encima del eje de abcisas y negativa si está por debajo. Como en una señal sinusoidal el semiciclo positivo es idéntico al negativo, su valor medio es nulo. Por eso el valor medio de una Oscilación sinusoidal se refiere a un semiciclo. Mediante el cálculo integral se puede demostrar que su expresión es la siguiente;

A_{med}= {2 A_0 \over {\pi}}
  • Pico o cresta: Valor máximo, de signo positivo (+), que toma la oscilación sinusoidal del espectro electromagnético, cada medio ciclo, a partir del punto “0”. Ese valor aumenta o disminuye a medida que. la amplitud “A” de la propia oscilación crece o decrece positivamente por encima del valor "0".

  • Valor eficaz (A): su importancia se debe a que este valor es el que produce el mismo efecto calorífico que su equivalente en corriente continua. Matemáticamente, el valor eficaz de una magnitud variable con el tiempo, se define como la raíz cuadrada de la media de los cuadrados de los valores instantáneos alcanzados durante un período:

A= \sqrt {{1 \over {T}} {\int_{0}^{T} a^2(t) dt}}
En la literatura inglesa este valor se conoce como R.M.S. (root mean square, valor cuadrático medio), y de hecho en matemáticas a veces es llamado valor cuadrático medio de una función. En el campo industrial, el valor eficaz es de gran importancia ya que casi todas las operaciones con magnitudes energéticas se hacen con dicho valor. De ahí que por rapidez y claridad se represente con la letra mayúscula de la magnitud que se trate (I, V, P, etc.). Matemáticamente se demuestra que para una corriente alterna sinusoidal el valor eficaz viene dado por la expresión:

A ={A_0 \over {\sqrt 2}}.
El valor A, tensión o intensidad, es útil para calcular la potencia consumida por una carga. Así, si una tensión de corriente continua (CC), VCC, desarrolla una cierta potencia P en una carga resistiva dada, una tensión de CA de Vrms desarrollará la misma potencia P en la misma carga si Vrms = VCC.
Para ilustrar prácticamente los conceptos anteriores se considera, por ejemplo, la corriente alterna en la red eléctrica doméstica en Europa: cuando se dice que su valor es de 230 V CA, se está diciendo que su valor eficaz (al menos nominalmente) es de 230 V, lo que significa que tiene los mismos efectos caloríficos que una tensión de 230 V de CC. Su tensión de pico (amplitud), se obtiene despejando de la ecuación antes reseñada:

V_0=V_{ef} \cdot \sqrt 2.
Así, para la red de 230 V CA, la tensión de pico es de aproximadamente 325 V y de 650 V (el doble) la tensión de pico a pico.
Su frecuencia es de 50 Hz, lo que equivale a decir que cada ciclo de la oscilación sinusoidal tarda 20 ms en repetirse. La tensión de pico positivo se alcanza a los 5 ms de pasar la oscilación por cero (0 V) en su incremento, y 10 ms después se alcanza la tensión de pico negativo. Si se desea conocer, por ejemplo, el valor a los 3 ms de pasar por cero en su incremento, se empleará la función sinsoidal:

v(t)=V_0 \cdot \sin(2 \pi f t) = 325\sin(2 \pi \cdot 50 \cdot 3 \cdot 10^{-3}) = 325\sin(0,3 \pi) \approx 262,9 \ V

Representación fasorial

Una función sinusoidal puede ser representada por un número complejo cuyo argumento crece linealmente con el tiempo(figura 3), al que se denomina fasor o representación de Fresnel, que tendrá las siguientes características:
  • Girará con una velocidad angular ω.
  • Su módulo será el valor máximo o el eficaz, según convenga.
Figura 3: Representación fasorial de una oscilación sinusoidal.
La razón de utilizar la representación fasorial está en la simplificación que ello supone. Matemáticamente, un fasor puede ser definido fácilmente por un número complejo, por lo que puede emplearse la teoría de cálculo de estos números para el análisis de sistemas de corriente alterna.
Consideremos, a modo de ejemplo, una tensión de CA cuyo valor instantáneo sea el siguiente:
Figura 4: Ejemplo de fasor tensión.

v(t)={4 \sin (1000t + {\pi \over {4}})}
Tomando como módulo del fasor su valor eficaz, la representación gráfica de la anterior tensión será la que se puede observar en la figura 4, y se anotará:

\vec{V} = 2 \sqrt 2 e^{\pi\mathrm{j} \over {4}} = 2 \sqrt 2 _\ \underline{/45^\circ}
denominadas formas polares, o bien:

\vec{V} = 2 + 2 \mathrm{j}
denominada forma trinómica.

Corriente trifásica

La generación trifásica de energía eléctrica es la forma más común y la que provee un uso más eficiente de los conductores. La utilización de electricidad en forma trifásica es común mayoritariamente para uso en industrias donde muchas de las máquinas funcionan con motores para esta tensión.
Figura 5: Voltaje de las fases de un sistema trifásico. Entre cada una de las fases hay un desfase de 120º.
La corriente trifásica está formada por un conjunto de tres formas de oscilación, desfasadas una respecto a la otra 120º (grados), según el diagrama que se muestra en la figura 5.
Las corrientes trifásicas se generan mediante alternadores dotados de tres bobinas o grupos de bobinas, enrolladas sobre tres sistemas de piezas polares equidistantes entre sí. El retorno de cada uno de estos circuitos o fases se acopla en un punto, denominado neutro, donde la suma de las tres corrientes, si el sistema está equilibrado, es cero, con lo cual el transporte puede ser efectuado usando solamente tres cables.
Esta disposición sería la denominada conexión en estrella, existiendo también la conexión en triángulo o delta en las que las bobinas se acoplan según esta figura geométrica y los hilos de línea parten de los vértices.
Existen por tanto cuatro posibles interconexiones entre generador y carga:
  1. Estrella - Estrella
  2. Estrella - Delta
  3. Delta - Estrella
  4. Delta - Delta
En los circuitos tipo estrella, las corrientes de fase y las corrientes de línea son iguales y, cuando el sistema está equilibrado,las tensiones de línea son  \sqrt{3} veces mayor que las tenisones de fase y están adelantadas 30° a estos:
V_{linea}=\left[\sqrt {3}V_{fase}\right]_{ \left( \phi + 30 \right)}
En los circuitos tipo triángulo o delta, pasa lo contrario, las tensiones de fase y de línea, son iguales y, cuando el sistema está equilibrado, la corriente de fase es  \sqrt{3} veces más pequeña que la corriente de línea y está adelantada 30° a esta:
I_{fase}=\left[\frac{I_{linea}}{\sqrt {3}}\right]_{ \left( \phi + 30 \right)}
El sistema trifásico es un tipo particular dentro de los sistemas polifásicos de generación eléctrica, aunque con mucho el más utilizado.

VER INFORMACION EN:     http://es.wikipedia.org/wiki/Corriente_alterna

No hay comentarios:

Publicar un comentario